پیش‌بینی خودکار گره‌های ترافیکی با استفاده از مدل سازی شبکه عصبی

author

  • سید فرزین فائزی دپارتمان مهندسی عمران، دانشکده شهید صدوقی، دانشگاه فنی‌وحرفه‌ای استان یزد، یزد، ایران
Abstract:

افزایش حجم ترافیک و ایجاد گره­های ترافیکی در راههای بین‌شهری و همچنین شبکه ترافیک شهری سبب کاهش کارایی شبکه ترافیکی و راههای مورد نظر می­شود. پیش­بینی و کشف هرچه سریعتر این گره­های ترافیکی می­تواند کمک شایانی به حل مشکل و روان‌سازی جریان ترافیک نماید. شبکه­های عصبی مصنوعی نشان داده­اند که با تکیه بر قابلیت یادگیری خود می­توانند عملکرد بسیار مناسبی در این زمینه از خود نشان دهند. هدف اصلی این تحقیق پیش­بینی و تشخیص خودکار گره­های ترافیکی با استفاده از مدل شبکه عصبی هوشمند و مقایسه کارایی مدل با مدلهای دیگر موجود است. به طوریکه با استفاده از داده­های آموزشی، شبکه عصبی مصنوعی را به گونه‌ای بیاموزد که بتواند خروجی مورد نظر را تشخیص و در مورد داده­های هدف با موفقیت پیش‌بینی را انجام دهد. روش تحقیق جهت پیش­بینی معماری شبکه از سه پارامتر ورودی و یک پارامتر خروجی استفاده شده است. در این تحقیق از سه نوع شبکه عصبی مصنوعی به منظور پیش­بینی و کشف خودکار گره­های ترافیکی استفاده شده است. داده­های مورد استفاده در این تحقیق از اطلاعات واقعی مرکز کنترل ترافیک آزادراه تهران- کرج به‌صورت روزانه، هفتگی و ماهیانه می‌باشد. در ابتدا از شبکه عصبی چند لایه پرسپترون، استفاده شده و شبکه عصبی دیگری که در این تحقیق مورد استفاده قرار گرفته، شبکه نروفازی می‌باشد و در نهایت از شبکه عصبی تابع مبنای شعاعی به منظور بررسی موفقیت دو شبکه قبلی استفاده شده است. کارایی و دقت مدلهای مختلف براساس بهترین و جامع‌ترین مجموعه شاخص‌های ارزیابی جهت سنجش کارکرد هر کدام از مدلها تحلیل شد و براساس مقایسه کارایی آنها نسبت به یکدیگر، مدل پرسپترون با کارایی بهینه معرفی شد. مقایسه نتایج مقادیر پیش‌بینی شده جریان ترافیکی با مقادیر اندازه‌گیری شده در واقعیت، نشان می‌دهد که مدل مطرح شده به‌طور رضایت‌بخشی جریان ترافیکی را پیش‌بینی می‌کند.    

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی

پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...

full text

مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...

full text

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

شبیه سازی و پیش‌بینی جریان رودخانه‌ها با استفاده از شبکه عصبی و مدل فوریه

  مقاله حاضر به بررسی نحوه عملکرد شبکه‌های عصبی MLP در ارتباط با خروجی مدل فوریه، FSAM، می‌پردازد. مدل FSAM که مدل شبیه ساز بارش است، تحلیل مدل‌های کلاسیک را در قلمرو فرکانس، که توسعه نظریه طیفی فرآیندهای متداول نظیر طیف الگوهای ARIMA را در درون خود دارد، ارائه می‌دهد. کاربرد همزمان شبکه‌های عصبی MLP و مدلFSAM، امکان پیش بینی جریان ماه (i) ام را در ارتباط با پیش بینی بارش همان ماه، میسر می‌سازد...

full text

مدل سازی کیفیت زیباشناختی منظر در فضای سبز شهری با استفاده از شبکه عصبی مصنوعی

ارزیابی‌های کیفیت منظر عمدتا اشاره به نقش کلیدی عناصر طبیعی و مصنوعی منظر در ایجاد رضایت‌مندی و درک زیبایی از منظر دارند. هدف از این مقاله مدل‌سازی ارزیابی کیفیت زیباشناختی منظر با استفاده از شبکه عصبی مصنوعی به منظور کشف روابط حاکم در ساختار منظر و ارتباط عناصر منظر با کیفیت زیباشناختی آن است. جهت انجام پژوهش حاضر چهار بوستان (جمشیدیه، نهج البلاغه، قیطریه، آب و آتش) با تنوع بالا در کیفیت منظر ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 2

pages  35- 52

publication date 2018-06-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023